MATH1109 topic1
集合序列的上极限和下极限
设{ ${A_n,n \ge 1}$ },求$\bigcap\limits_{n=1}^\infty \bigcup\limits_{k=n}^\infty A_k$ 及$\bigcup\limits_{n=1}^\infty \bigcap\limits_{k=n}^\infty A_k$,
其中$A_1=${ $1,a$ },$A_2=${ $0,b$ },$A_3=${ $1,b$ },$A_4=${ $0,b$ },$A_5=${ $1,b$ }。
Here :
① $\bigcap\limits_{n=1}^\infty \bigcup\limits_{k=n}^\infty A_k$ 的解法是先并再交。
当$n=1$时,记$P_1=\bigcup\limits_{k=n=1}^\infty A_k=${ $0,1,a,b$ },
当$n=2$时,记$P_2=\bigcup\limits_{k=n=2}^\infty A_k=${ $0,1,b$ },
所以,$\bigcap\limits_{n=1}^\infty \bigcup\limits_{k=n}^\infty A_k=P_1\bigcap P_2\bigcap P_3\bigcap\cdots=${ $0,1,b$ }
若记$\lim\limits_{n\to\infty}supA_n=\bigcap\limits_{n=1}^\infty \bigcup\limits_{k=n}^\infty A_k$
则,$\lim\limits_{n\to\infty}supA_n=$ {$w|w$属于无穷多个$A_n$}
② $\bigcup\limits_{n=1}^\infty \bigcap\limits_{k=n}^\infty A_k$ 的解法是先交再并。
当$n=1$时,记$Q_1=\bigcap\limits_{k=n=1}^\infty A_k=\varnothing$,
当$n=2$时,记$Q_2=\bigcap\limits_{k=n=2}^\infty A_k=${ $b$ },
所以,$\bigcup\limits_{n=1}^\infty \bigcap\limits_{k=n}^\infty A_k=Q_1\bigcap Q_2\bigcap Q_3\bigcap\cdots=$ { $b$ }
若记$\lim\limits_{n\to\infty}inf A_n=\bigcup\limits_{n=1}^\infty \bigcap\limits_{k=n}^\infty A_k$
则,$\lim\limits_{n\to\infty}inf A_n=$ {$w|w$至多不属于有限多个$A_n$}